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A diffusion tensor is a mathematical construct used to describe
water diffusion in complicated biological structures. It describes a
process which occurs in all directions simultaneously. It is difficult
to comprehend or graphically display the information in the dif-
fusion tensor. This paper describes a coordinate system approach
for producing scalar measures which characterize key aspects of
the diffusion tensor. The eigenvalues of the diffusion tensor are
introduced as the three elements of a point in a Cartesian coordi-
nate system. The Cartesian coordinates are then expressed in
cylindrical and spherical coordinates. The orthonormal coordi-
nates of the spherical system are particularly useful scalar mea-
sures of attributes of the diffusion tensor: One coordinate contains
all the information about the overall magnitude of diffusion. An-
other contains all of the anisotropy information. The third coor-
dinate contains all of the information about skewness. No infor-
mation is lost when transforming the original eigenvalues to
spherical coordinates. © 1999 Academic Press

Key Words: diffusion tensor imaging; magnetic resonance im-
aging; anisotropy; diffusion; skewness.

INTRODUCTION

These measures can be tabulated and easily compared. P
metric images of these scalar values can be produced.

There are many aspects of the diffusion tensor which ha
been shown to be interesting and informative. Four of thes
basic characteristics follow. (1) The overall magnitude of dif
fusion. (2) The degree that the rate of diffusion is dissimilar i
different orthogonal directions. This is referred to as the degre
of diffusion anisotropy. (3) The degree that the rate of diffusio
in two of three orthogonal directions differs from the rate o
diffusion in the third direction, i.e., how symmetrically the
diffusion is distributed in orthogonal directions. This is re-
ferred to as skewness. (4) Information about the relative ma
nitudes of the eigenvalues, i.e., the largest, intermediate, a
smallest eigenvalues. This is referred to as the eigenval
order. It should be noted that the measured diffusion tens
represents an average value over a voxel. On a microsco
scale the diffusion will always be anisotropic. However, the
measured diffusion tensor will demonstrate anisotropy only
the cell structures are ordered on the scale of the voxel.

The magnitude measure should have units of rate of diffi
sion. The anisotropy and skewness measures should be unitl
so that they are independent of scale.

The rate of water diffusion in complex three-dimensional The mathematical notation for the diffusion tensor is al

biological tissues is not the same in all directions. Therefor@(ray of nine elements, with the diagonal elements correspor
this process cannot be fully characterized by a simple scalaring to the rate of diffusion in different directions and the
tensor is a mathematical construct which can be used to @é-diagonal elements describing the degree of correlation b
scribe diffusion in complex media. A tensor describes a préveen the diffusion measured along the various axes.

cess which occurs in all directions simultaneously, with pos-

sibly different magnitudes in each direction. However, it may a1 Q1 Qi3
be difficult to comprehend or graphically display all the infor- D= @i a2 azs [1]
mation contained in the diffusion tensor. It is often necessary to A3 Qg Ags

extract information about some aspect of the tensor which is

found to be useful. When applied to medical imaging, this In biological systems the rate of diffusion is the same i
problem is compounded because information about regiomectly opposing directions. This results in a symmetric tens
diffusion is obtained by measuring the diffusion tensor in marwith a; = a;. Therefore, there are only six unique elements i
voxels. It is not possible to produce a single image whidhe diffusion tensor. This paper describes a method for extra
conveys all of the information contained in the diffusion tening useful scalar information from the tensor.

sor. Itis necessary to extract scalar measures from the diffusior first step to extracting scalar information from the diffu-
tensor which represent useful characteristics of the tenssion tensor is to dissect it into two parts, each having compl
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ORTHONORMAL INVARIANT MEASURES FOR DTI 69

mentary information. Diagonalization of the tensor separatessiire which can be expressed as a function of the original thr
into component eigeraluesand eigemectors(l, 2). eigenvalues can also be expressed as a function of the cool
nates in any new coordinate system.

A, OO There are six possible permutations of the order of the eige
D=[V: Vo, V3] O A, O |[Vy V, V5]t values. Each permutation defines a point in eigenvalue spa
0 0 X Thus eigenvalue space can be divided into six regions, ea

[2] corresponding to a permutation of the order of the eigenvalue
Sets of eigenvalues in which two or three are identical lie at th
The eigenvectors/,, V,, andV;, are column vectors which boundaries between these regions. The region corresponding
describe the orientation of the primary diffusivity in spacéhe ordering Xma. A Amin) Will be referred to as ordered eigen-
relative to an external frame of reference. These unitless veelue space wherg,.,, A, andA,;, refer to the largest, interme-
tors define an orthonormal basis for a preferred coordinatmate, and smallest eigenvalues, respectively. This definition refe
system for the diffusion tensor. The eigenvalues of a diagon#d-the true values of the eigenvalue; the influence of measurem
ized tensor are the three elements along the principal diagoeabr is not a factor in this formulation.
of the tensor,, A, and ;. The eigenvalues each have the
units of diffusivity, usually mmys. Each eigenvalue corre-
sponds to an eigenvector and together they specify the magni-
tude of diffusivity in each of three orthogonal directions in ) ) ]
space relative to an external frame of reference. However, thé® Scalar measure is a scalar valued function of the eige
positions in which the eigenvalues appear along the princiﬁ@'ues of the diffusion tensqrwh|ch conveys information abot
diagonal of the tensor depend on the original frame of refdfi€ tensor, such as an anisotropy measure. The value of
ence. The positions do not correspond to the relative magHivariant measure does not depend on the frame of reference
tudes of the eigenvalues. Thus the process of mathemati$ measurement). An invariant measure is unchanged for
diagonalization separates the diffusion tensor into two comp@y Of the six cyclic permutations of the order of the thre
nent parts: The eigenvectors are unitless and contain all of §j@envalues. The information about eigenvalue order allov
information about the spatial orientation of the diffusion relddifferentiation of the six permutations of the eigenvalues. It i
tive to an external frame of reference. The eigenvalues have tAi§ information that is lost during a transformation from eig
units of diffusivity and carry all of the information about theenvalue space to ordered eigenvalues space. _
magnitude of diffusion, with no information about direction The first coordinate system to be discussed will be th
(other than the fact that the three eigenvalues describe diffus[§§tangular Cartesian coordinate system. A modification of th
in orthogonal directions). The eigenvectors will not be consigystém will involve ordering the eigenvalues by magnitude
ered further in this paper. Next the axes of the original Cartesian c_oordlnate_ system w
A diffusion tensor describing a biological system has thrd¥ rotated to create the rotated Cartesian coordinate syste
real positive eigenvalues. This set of three eigenvalues can g particular axes rotation which is chosen is a key eleme
considered to be coordinates of a point in three-dimensio@ithe subsequent coordinate systems. This orientation of t
Euclidean space. Because the eigenvalues are all positive,3gS Will be maintained and a circular cylindrical coordinat
allowed position of the point they describe in space is restricté4Stém will be imposed. Then, again maintaining the san
to one-eighth of three-dimensional space. This allowable sifjientation of the rotated axes, a spherical coordinate systs
set of three dimensional space will be referred teigenvalue Will be defined. Finally, the measure of the polar angle will b
space.A coordinate system other than the rectangular Cartgéparated into a skewness measure and an indicator of
sian coordinate system of the original eigenvalues can pecific permutation of th_e order of the.elgenvalues. The tr_m
imposed on this eigenvalue space. A desirable requirement fgrameters of the spherical system will be shown to be in
any new coordinate system, such as a cylindrical or spheri@@ticularly useful form: magnitude, anisotropy, and skewnes
coordinate system, is that the component basis elements ggPectively. It will be shown that the three parameters of tt
orthogonal. This eliminates colinearity among the coordinatéBherical coordinate system which correspond to magnituc
so that each coordinate supplies unique, complementary, &Sotropy, and skewness have invariant forms so that th
independent information about each point in space. A point Yiglues are independent of the frame of reference. Moreove
eigenvalue space, which is a subset of three-dimensional spie@se three measures are mutually orthogonal so that tr
requires exactly three coordinates in an orthogonal system f§ntain independent and complementary information about
its unique specification. eigenvalues.
None of the information which can be conveyed by the Rectangular Cartesian coordinate systenin this coordi-
original three eigenvalues is altered by adopting a new coarate system, the position of a poif®t,, in eigenvalue space is
dinate system for eigenvalues space. Any parameter or mepecified by the eigenvalues themselves,

THE COORDINATE SYSTEMS
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)\l _2 1
I_Dc(/\ll )\2! )\3) = )\2 . [3] \/6 \//g \’/6
Az 2101 |[M X
Er (Al! )\2! )\3) = O 7/7 Y /\2 = y ’ [7]
) \,2 \/2 )\3 z
The component elements,, A,, and;, of the Cartesian system 1 1 1
are by definition orthogonal. But, in general, the elements of the ﬁ ﬁ ﬁ

Cartesian coordinate system are not invariant since, in general,

wherex, y, z > 0.
Ay Ay The eigenvalue triple identity line is an obvious line of
[ Ay ] + [ Ay ] [4] symmetry in eigenvalue space since any measure applied
A3 A3 any point along the line of triple identity will automatically be
invariant.
The coordinateg, y, andz all have units of diffusivity. The
Each element of the vectd. has the units of diffusivity. supscript r inP, denotes the particular rotation of the axe:
Cartesian coordinate system with ordered eigenvalués. where thez axis is along the triple identity line. In this system
this coordinate system, the position of a point in eigenvaldle x axis is arbitrarily chosen to be in the = A; plane with
space is specified by the eigenvalues ordered by magnitudthe positivex axis in the direction wherg, < A,. The positive
y axis is in the plane\; = (A, + A;)/2 with the positivey
direction wherex, < A;. As shown in Egs. [7] and [8]z is
Amax invariant, whereax andy are not invariant measures. The
Pordered (A1, Az, Ag) = [ Aint ] [5] parameter is closely related to the well-known measubs,
Amin (3) and trace 1, 2, 9.

tracé€D)
= /\bar \r‘/§ = Dbar \/§ = Ta [8]
\r

where Ay A @and A, denote the maximum, intermediate, _ (A + A+ Ay)
and minimum values of the eigenvalues. Z= \3
This is not a true coordinate system, since it maps six points
from eigenvalue space onto one point in ordered eigenvalue space. . e .
Igen P P . 9 p\{ihereD is the diffusion tensor anil,,, is the mean of the three
The six points which map onto ordered eigenvalue space are the

points defined by the six possible permutations of the eigenvaf-:fjI enval_uesD_bar a_nd Frace are defined as in Refﬁ;._—él).
order. However. th® transformation is invariant he six points in eigenvalue space corresponding to the s
' 1 ordered ' permutations of the order of the eigenvalues, when defined

Rotated Cartesian coordinate systenThe axes of the orig- terms of rotated Cartesian coordinate system, all have the sa
inal (not ordered) Cartesian coordinate system can be rotategajue. The points defined by the six permutations of th
by taking linear combinations of the eigenvalues. The rOtati‘@"i'genvalues display an interesting symmetry inxhg plane
matrix must have orthogonal basis vectors in order for the Ng¥thogonal to thez axis). These six points all lie the same
coorQinate system to have orthogonal axes. If the rotatig_qgtance from the origin in the-y plane. This radial symmetry
matrix is orthonormal (the orthogonal basis vectors are of unjt the eigenvalue permutations is utilized in the circular cylin
length) there is no resultant dilation or contraction of eigeRyical coordinate system described below. The six points d
value space. If an orthonormal transform is used, the resultigge by the six permutations of the eigenvalues can be co
measures maintain units of diffusivity. sidered to be three sets of two points; each set is symmetrica

placed about one of the three lines defined by the intersecti
Uy U Ugs AL if.tr;gé(,%gplzine and the planeg; = A, A, = Az, andi; =
— 1y . .
Proatea (A1, A2y Aa) = { 321 322 323 ” iz ] 61 e P, system is similar to a set of measures proposed |
st e ° Conturoet al. (3). Conturoet al. applied their transformation
only to ordered eigenvalues. Their axes of the major and min

A particularly useful orthonormal rotation matrix is oneslements of anisotropy; ande, are colinear with thex andy
which places the newaxis along the eigenvalue triple identityaxes, respectively. However, transformation from the Cartesi:
line, A, = A, = A4, with the positivez axis in the direction of coordinate system to the e, A,, System is not performed with
the positive eigenvalues. When diffusion is isotropic, the sarae orthonormal matrix so there is a distortion of distances |
in all directions, the diffusion eigenvalues lie along this triplepacem = —x/V6, £ = —yI\V2, Ay = Z/V/3, wheni, <
identity line. Ay < As.
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y axis Case Il, Quadrants Il and Ik < 0.
M =23 M=A2

(A1, Ay Ag) = 7 + ArcTan REICRE0) [12]
d(Ay, A, Ag) =7 20 — Ay — As

Case lll, Quadrant IVx > 0 andy < 0.

~ 2+ ArcTan| 22 224 13
r2=13 $(Ae Aoy Ag) = 2 + ArcTan| 50—y, 13

X axis

As in the P, system,z is invariant. Equation [10] demon-
strates that the new parametes also invariantr has the same
units as the eigenvalues. is proportional to the standard
deviation of the eigenvalueg)(

Sd ()\lv )\21 )\3)

VO = M) = Aead® (A — Apa)?
B \/E

FIG.1. Thex-y plane of the rotated Cartesian coordinate system showing
the projection of points defined by the six permutations of the eigenvalue order. =
These points all lie in at a distancefrom the origin. /

|~

=
N

(14]

where sd is the standard deviation of the eigenvalues.

The polar angle measuré, is unitless but not invariant. The
zero point of¢ is chosen to be theaxis, wherex, = A, in the
direction that\; < A,. ¢ ranges from 0 to 2.

An invariant measure, which represents the coefficient

Circular cylindrical coordinate system.This system is a
modification of theP, system, Eq. [7]. The axis is the same
as in theP, system. The other two coordinatesand ¢, of P,
are the coordinates andy of P, written in polar coordinate
form. A,,, denotes the mean of the eigenvalues; 0, and 0=

b < 2m variation of the diffusion eigenvalueg)( is (Appendix A)

; cV(Ag, Ay, Ag)
Peyi (A1, Az, Ag) = [ ¢ ] ) \Er
z -V
\/2 z

r()\lv )\21 )\3) = J'/XZ + y2
! VO = M) 2+ (Mg = M) 2+ (Mg = Apa)?
= VO = Xoa)® + (A2 = Mpad >+ (A5 = Apa)® [10] = - [19]

—
\/2 /\bar

The value of the polar angle measuge, must be defined to
account for the specific quadrant of tkey plane where the
eigenvalue point lies.

Case |, Quadrant ix > 0 andy > 0.

cv is unitless. It is related to measures commonly used
express the degree of eigenvalue anisotropy (see Appendix /
A, (3), RA (relative anisotropy) 4, 4), and FA (fractional
anisotropy) 2, 4). However,cv is not orthogonal t@ (or D,
or trace). Thus, the values of andz are neither independent
V@ (A — Ay) ] nor complementary (see Discussion).

2X — Ay — Ag Spherical coordinate systemThis coordinate system is
composed of one radial measuge, and two unitless angle
[11] measuresf and ¢. The polar angle measukis identical to

SNy, Ay, Ag) = ArcTan[i] = ArcTan[
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r 0 is chosen to coincide with the eigenvalue triple identity line. Th
zero point of¢é is again chosen to coincide with the plane= A;
in the direction thai, < A,.
The skewness measure, s, and permutation indicator,
The measure of the polar anglé, can be divided into two
components. The first componentds a skewness measure.
z The second component [5 an indicator of the order of the
P eigenvalues.
The indicator measurg, can be defined as (Fig. 3)

[<»]

p=1 for0=d¢ <n/3

p=2 formw/3=¢<2m/3

p=3 for2n/3=¢<m

FIG. 2. A point in thex—z plane. Tand = r/z and cosf = z/p.
p=4 form=¢<4w/3

the polar angle measugein the circular cylindrical coordinate p=5 for4n/3=d<5m/3
system:
p=6 for5m/3=¢<2m. [20]
0
Ps(Ag, Apy Ag) = | & [16] pis anindicator of the permutation of the eigenvalue order. A
p equivalent definition op is
[ (AL + A+ A .
00, A Ap) = ArcCod il A2 AT ] yos
[ V3 VAT + A2+ A3 M=23
[z
= ArcCog ]
LP
[r
= ArcTan z} [18]
L -
(see Fig. 2).
d)(/\la )\21 )\3)
= guadrant modification- ArcTa m
q 20, — Ay — As|’ p=4 p=6
[19]
wherep > 0, 0= 6 < ArcCos(V/3/3) = 0.96 Rad= 54.74°, PE®
and 0= ¢ < 2. The quadrant modification fas was detailed
in Egs. [11-13].
p is invariant and has the units of diffusivity. It is a measure of
the total magnitude of diffusiord. 6 is invariant and unitless. It

is related to the coefficient of variation of the eigenvalues (Ap-

pendix A) and is thus a measure of their relative disperstds. _FIG. 3. Thex-y plane. The lines indicate the intersect_ion of Xy plan_e
itless but not invariant. It is a mixed measure of the skewneba: e As = A Az = s, ands = A, planes, respectively. The regions

unit . ; . A . (§)§respond|ng to different permutations of the eigenvalue order are indicat

of the diffusion eigenvalues and an indicator of the permutation ge region wherg = 1 corresponds to the projection of ordered eigenvalu

the order of the eigenvalues (discussed below). The zero pointspéice onto the-y plane.
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p=1 forA, <A, =4 s(0)
a3(¢)
p=2 forA, =X, <Ag
/3 +
p=3 forA,<Az;=A, 1/sqrt@) |

p=4 forA;=A,<A;

p=5 fords< A =\, j"73 W | @ I vln ¢

0
~1/sqrt(2)
p=6 forA;=A;<A,. [21]
The skewness measure,can be defined as
Whenp =1 s=4¢ FIG. 4. Graphs of skewness measurss(sawtooth function) anda;
(smooth function, see Appendix 3). Both satisfy the criteria for skewnes
whenp=2 s=(2#%/3) — ¢ measures as defined in the text.
whenp=3 s= ¢ — (27/3)
whenp=4 s= (47/3) — ¢ can be separated as the measprasds. The three measures

p, 6, ands are invariant, independent, and mutually orthogona
whenp=5 s= ¢ — (47/3)

whenp=6 s=27— ¢. [22] OTHER VARIATIONS

It is not necessary to use the eigenvalues as the fundamer
unit for the Cartesian coordinate system. One alternative wou
be to use the square root of the eigenvalues. This choice
motivated by the Einstein equation which relates the root me:

The skewness parametear,can equivalently be defined by
using ordered eigenvalues,

/§ )\i - )\ i 1 i T H
S(A1, Ay As) = ArcTan v3 (Aing max) 23] square diffusion distance to the square root of the diffusio
2N min = Aint — Amax coefficient @, 5),
In other words,s equals¢ when the eigenvalues lie in Ky \f,\fl
ordered eigenvalue spage,= 1. s is a mapping ofp onto a K=| k, | = /A = . 24
. . . . 2 \J V2 . [ ]
restricted range [0#/3]. As with ordering the eigenvalues Ks \/rs

according to their magnitudesjs invariant. A third method of

calculatings without the use of logical operators or the need to To the degree that the Einstein equation holds true f

order the eigenvalues is given in Appendix C; see Eq. [C7]diffusion in the complex tissue environment, the elements of

Many .ot.her skewness measures are possible. The neces M elated to the average distance traveled by the molecules
and sufficient requirements for a skewness measure are t

the’ different directions. A diffusion ellipsoid has been used t

f'rSt.’ g |sf a ftj'ncUofn of_;j;] only gn;:_/’; C;L.e()j’ 'ste'cond, Itt 'S @ characterize the diffusion tens@)(The elements oK are the
periodic function of$ with perio » HIrG, L 1S monotonic I(%ngths of the principal axes of the diffusion ellipsoid.

over each half of its period and, fourth, it is symmetric abou : : ;
the midpoint of its period (see Fig. 4). Using the spherical coordinate system, khealues become

p(Ky, Ky K3) = \f‘/Ki + K% + K% = \s/’)\l + A+ A5 [29]
p(K1, Koy K3) = 3Dpar = \/trace{D) [26]

(Kl + Ko + Kg)
B(Kl, Ko, K3) = AI’CCO{ 2 .2 > 2
V3 VKTt K3+ K3

SUMMARY OF THE TRANSFORMATIONS

The three eigenvalues of the diffusion tensor define a point
in a Cartesian coordinate system. This point can be uniquely
expressed in other coordinate systems. The spherical coordi-
nate system is particularly useful since its orthogonal coordi-
nates,p, 0, and ¢, separate the information about diffusion _ ArcCos{
magnitude, relative eigenvalue dispersion, and skewness, re-
spectively. The parameteb also contains information about
the ordering of the eigenvalues. These two componenis of A constant value op(k;, k,, k3) for a volume of brain

(k1 + Ky + Ka)
\/é \y‘/)\l + AZ + )\3

. [27]
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tissue can be interpreted as a constant total average patilue skewness. The parameteis similar to many of the
length of diffusion, with pathlength in the root mean squar&nisotropy” measures proposed in the literati2e3j. How-
sense. ever, it has the units of diffusivity and thus is not invariant tc
scale.
DISCUSSION In the spherical coordinate system there is no paramet
which describes isotropic diffusion. Howeverdescribes the

In the present derivation, the orthogonal coordinates of thgagnitude of total diffusion. The other two parameteérand
spherical system are shown to be particularly useful scalgror s), reflect the eigenvalue information which is “not total
measures of the diffusion tensor: One coordinate contains @#fusion.” 6 is scale invariant and closely related to the coef
the information about the overall magnitude of diffusion. Anficient of variation of the eigenvalues. It is more correct to refe
other contains all of the information about relative eigenvalyg ¢ as a measure gelative eigenvalue dispersion rather than
dispersion. The third coordinate contains all of the informatiognisotropy. Allowing for this slight discrepancy in terminol-
about skewness. Because these coordinates are orthogonal §gy 6 will herein be referred to as a measure of anisotrop
represent independent and distinct attributes of the diffusigcause it is closely related to previously described “anisc
tensor. Moreover, no information is lost when transformingopy” measures?, 3) and it contains the information from the
from the original three eigenvalues to the coordinates of tRgyenvalues which is currently referred to as “anisotropy
spherical system. The measures of diffusion magnitude, rejastead of relative eigenvalue dispersion (RED). This usage
tive dispersion, and skewness are all invariant to the frametk term anisotropy separates skewness from anisotro
reference in which measurement of the diffusion tensor (RED).
performed. Other “anisotropy” measures have been proposed in tl

The parametep represents the total magnitude of diffusioniiterature, in particular, RA, FAA,, and the volume ratio (VR)
It is the distance in eigenvalue space from the origin to thg, 3). Appendices A and B derive mathematical expressior
point defined by the eigenvalues. Itis the only parameter in th§lating these measures to the parameters of the present sp
spherical system with units of diffusivity: is an extension of jcal coordinate system. Itis shown in Appendix A that RA, FA
the apparent diffusion coefficient)(applied to isotropic dif- and A, are functions of9 only and thus are pure anisotropy
fusion; in the isotropic diffusion case equals the apparent(RED) measures. They all contain identical information abot
diffusion coefficient. the eigenvalues.

z or a function ofz is a measure of the magnitude of the The volume ratio, VR, however, is shown in Appendix B tc
isotropic part of total diffusion4). z does not contain all of the pe a function of both and ¢. In particular the form of the
information about total diffusion magnitude. has units of relationship of VR tog is that of a skewness measure. There
diffusivity and contains the information about the abSO|Utﬁ)re, VR is a mixed measure containing contributions fron
dispersion of the eigenvalues. Sircéepends on bothand6,  both skewness and anisotropy (RED).

z (and thus any function dof) can also be thought of as amixed An advantage of) over the other anisotropy (RED) mea-

measure containing both magnitude and relative eigenvakiges is that differences ihhave a ready interpretation. A set

dispersion information. This can be seen by the relationshipf eigenvalues with an anisotropy of & twice as anisotropic
as one with a measure 6f This is because the rate of change

z=p cogh). [28] of 6 is uniform throughout its range. This sort of relationshif
does not hold for RA, FA, oA,. All three coordinategp, 0, and
In the case of isotropic diffusiom = p (sincef = 0). ¢ (or s) have this property of being uniform metrics over theil

Heretofore the term “anisotropy” has not been strictly aange.
absolutely defined other than in the sense that it literally means is orthogonal top. It is not orthogonal taz (or trace or
“not isotropic.” The parameterg, r, and ¢ (or s) of the D,,). Therefore, there is a degree of colinearity betweand
circular cylindrical coordinate system demonstrate that tw) i.e., these measures do not give complementary informatic
parameters are necessary to describe the eigenvalue informe-orthogonal taz but r would not be a preferred choice for
tion which is not isotropic (not contained &), in this case a second measure to complemesince it's value is dependent
and ¢. No single scalar parameter can be constructed whiabn scale, i.e., sets of eigenvalues which differ only by a sca
reflects all of the information about anisotropy which is corfactor would have different values af Normalizingr to
tained in the eigenvalue§he parameter is the distance in eliminate the scale factor, (i.e./z) yields a measure propor-
eigenvalue space from the eigenvalue point to the line tdnal to the coefficient of variation of the eigenvalues which i
isotropic diffusion. Since is related to the standard deviatiora function of6 (Appendix A).
of the eigenvalue, it measures the dispersion of the eigenvalThe measure of polar anglé, contains information about
ues. Taken literally, the term anisotropy encompasses twoth the order of the eigenvalues and the skewness of the th
attributes of the eigenvalues: eigenvalue dispersion and eigeigenvalues. In Appendix C it is shown that a previousl
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proposed skewness measusedan be expressed as a function \"@ r \,@
of ¢. The skewness measugg,is invariant. It is orthogonal to Ccv = N 7= N2 tan 6. [A3]
pandé. It is also orthogonal ta andr. s also has the property v V

of being a uniform metric, i.e., a set of eigenvalues with a
skewness value ofhas twice the skew as one with a value of’
S. Like z, r, p, 6, and ¢, the skewness measurg, can be
calculated without ordering the eigenvalues according to theircorollaries.
magnitude; see Eq. [C7]. This avoids bias that might be intro-

z, and p form two sides and the hypotenuse of a righ
riangle, respectively; see Fig. 2.

duced as a result of ordering the eigenval@sHowever, the (1) RA=tan6 [A4]
effect of measurement error on the values of all of the measures (2) FA=sing [A5]
discussed in this paper must be assessed.
tan 6
3 A=—75. [A6]
V2

CONCLUSIONS
Proof of Corollary (1). The relative anisotropy2( 4) is a
Using a spherical coordinate system approach, new fnction of 6,
variant scalar measures for attributes of the diffusion tensor
eigenvalues have been derived. These measures have tRA(AL, A, Aj)
unique property of being mutually orthogonal. Therefore, 5 5 5
unliqke oF:heFr) mgasures, ?he inforr%/ation (?ontained in these — ~ VO = Ao ® + (A2 = Aoad® + (g — Avad
measures is totally independent and complementary, there is V3 Abar
no colinearity between measures. Also, use of the coordi-
nates of the spherical coordinate system as scalar measiirésimmediately evident from Egs. [A2] and [A1] that
utilizes all of the information from the original eigenvalues.
A_ny other measure which can be derived from the original RA — V2
eigenvalues can also be derived from the measures of the Y cv = tan(0). [A8]
spherical coordinate system. v

. [A7]

N1

Proof of Corollary (2). The fractional anisotropy2( 4) is
also a function ofg,

APPENDIX A
Theorem. The relationship between the two measutes FA(Ay, A, As)
andcv is
\ ()\1 )\bar)z + ()\2 - )\bar)z + ()\3 - )\bar)z
=5 NG 2 2 - [A9]
V2 JAZHFAZ+ A

=
cv = \—3 tan 6. [A1] - -

\E Substituting Egs. [A7], [10], and [17] and then substituting Eq

[A9] (noting thatz/p = cos 6),
Proof. By definition, the coefficient of variationgv,

equals r ,§ \@
FA = —RA=-=cosftand = —=sin6. [AlQ
\fE P V2 V2 AL

VA, Az Ag) Proof of Corollary (3). A is a function of. It is defined

_ standard deviation as Q)
B mean
Ao’()\ly )\2! A3)
I 2 2 2
(AL — A + (A — A + (A3— A
_ \( 1 bar) ( Zr bar) ( 3 bar) . [AZ] B 1 V’/()‘l_ )\bar)2+ ()\2_ )\bar)2+ ()\3_ /\bar)z
\’2 Abar - E Avar -[A11]

The standard deviation was defined in Eq. [14] and the mekiging Corollary (1), Eq. [A6],
was defined in Eq. [8f andr are defined in Eqgs. [8] and [10].
Substituting these expressions into Eq. [A2] and simplifying tan

yields A, = 2 [A12]
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APPENDIX B Substituting Eqg. [A8] into Eq. [B7] yields
Theorem. The volume ratio is a mixed measure containing
contributions from both anisotropy (RED) and skewness.

2
Proof. The volume ratio is defined ag,(6) VR(p, ¢, cv) =1 — (cv)? — ——=cog3¢)(cv)®. [B8]

3,3

A1 Az As . [B1] This expression relates the volume ratio to the coefficient
[’\1 T At )‘3] variation. The dependence of VR @nremains because it is a
3 mixed measure of anisotropy (RED) and skewness.

VR()\l! )\2! )\3) =

Using Eq. [7] and the fact that the inverse of the rotation matrix APPENDIX C

is equal to its transpose, . :
d P Theorem. The relationship between the two measuags

r ; 1] (7)and ¢ is
8 NG
/6 3
N \ V7T x cog3
o I T | ¢ - = - 50 c1)
A3 \//6 \,’E \//g z A
1 1 1 Proof. The moment index of skewness;, is defined as
|6 2 |3 (7)
In the cylindrical coordinate system, ms
X =T COS¢ (B3]
y=rsin¢. [B4] The third moment of the distributioms, is (3)

Substituting Egs. [B2], [B3], and [B4] into Eq. [B1] yields Ma(Ag, Aoy Ag)

(Al - )\bar)3 + ()\2 - )\bar)g + ()\3 - )\bar)s

3r2 r®coq3¢) - [C3]
This derivation demonstrates that in the cylindrical coordfnd
nate system, the volume ratio depends on all three parameters,
r, ¢, andz. The ¢ dependence satisfies the criteria for a d(i,, A, As)
skewness measure defined in the text. -
In the spherical coordinate system, = \m;
r _ (Al - )\bar)z + ()\2 - )\bar)z + ()\3 - )\bar)z c4
tan0=2. [B6] - 3 - [c4]
Substituting this into Eq. [B5] yields Avar IS the mean of the three eigenvalues as defined as in Eq. [
a, is an invariant measure of skewness.
3 cog3) ¢ is the mixed skewness measure and indicator of eige
VR(p, ¢, 0) =1 — > tan® 6 — A tan® 6. [B7] value order in both the cylindrical and the spherical coordina
\ systems. Consider the three eigenvalues in the cylindric

) o ) ) ~ coordinate system. Using the results of De Moivre’s theorel
This derivation demonstrates that in the spherical coordinafgm complex analysis along with Eq. [10] yields

system, the volume ratio is independent of the diffusion mag-

nitude measurey. However, it is a mixed measure containing s

information about anisotropy (RED) and skewness as shown mr, b, 2) = — r Coi:"vb] [C5]
by its dependence of and ¢, respectively. 36
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and

d(r, ¢, 2) = (Cé]

i

Y

Equations [C5] and [C6] lead directly to Eq. [C1], the

desired result. The relationship satisfies the criteria for a skew-

ness measure as defined in the text. Figure 4 compares th
values of the skewness measueagép) ands(¢).

These results yield a method of calculatBwyithout the use 4
of logical operations or the need to explicitly order the eigen-
values:

ArcCog —a; 2
5= is 22 [C7]
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