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A diffusion tensor is a mathematical construct used to describe These measures can be tabulated and easily compared
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ater diffusion in complicated biological structures. It describes a
rocess which occurs in all directions simultaneously. It is difficult
o comprehend or graphically display the information in the dif-
usion tensor. This paper describes a coordinate system approach
or producing scalar measures which characterize key aspects of
he diffusion tensor. The eigenvalues of the diffusion tensor are
ntroduced as the three elements of a point in a Cartesian coordi-
ate system. The Cartesian coordinates are then expressed in
ylindrical and spherical coordinates. The orthonormal coordi-
ates of the spherical system are particularly useful scalar mea-
ures of attributes of the diffusion tensor: One coordinate contains
ll the information about the overall magnitude of diffusion. An-
ther contains all of the anisotropy information. The third coor-
inate contains all of the information about skewness. No infor-
ation is lost when transforming the original eigenvalues to

pherical coordinates. © 1999 Academic Press
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ging; anisotropy; diffusion; skewness.

INTRODUCTION

The rate of water diffusion in complex three-dimensio
iological tissues is not the same in all directions. There

his process cannot be fully characterized by a simple sca
ensor is a mathematical construct which can be used t
cribe diffusion in complex media. A tensor describes a
ess which occurs in all directions simultaneously, with p
ibly different magnitudes in each direction. However, it m
e difficult to comprehend or graphically display all the inf
ation contained in the diffusion tensor. It is often necessa
xtract information about some aspect of the tensor whi

ound to be useful. When applied to medical imaging,
roblem is compounded because information about reg
iffusion is obtained by measuring the diffusion tensor in m
oxels. It is not possible to produce a single image w
onveys all of the information contained in the diffusion t
or. It is necessary to extract scalar measures from the diff
ensor which represent useful characteristics of the te
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etric images of these scalar values can be produced.
There are many aspects of the diffusion tensor which

een shown to be interesting and informative. Four of t
asic characteristics follow. (1) The overall magnitude of

usion. (2) The degree that the rate of diffusion is dissimila
ifferent orthogonal directions. This is referred to as the de
f diffusion anisotropy. (3) The degree that the rate of diffu

n two of three orthogonal directions differs from the rate
iffusion in the third direction, i.e., how symmetrically t
iffusion is distributed in orthogonal directions. This is

erred to as skewness. (4) Information about the relative m
itudes of the eigenvalues, i.e., the largest, intermediate
mallest eigenvalues. This is referred to as the eigen
rder. It should be noted that the measured diffusion te
epresents an average value over a voxel. On a micros
cale the diffusion will always be anisotropic. However,
easured diffusion tensor will demonstrate anisotropy on

he cell structures are ordered on the scale of the voxel.
The magnitude measure should have units of rate of d

ion. The anisotropy and skewness measures should be u
o that they are independent of scale.
The mathematical notation for the diffusion tensor is

rray of nine elements, with the diagonal elements corresp
ng to the rate of diffusion in different directions and
ff-diagonal elements describing the degree of correlation

ween the diffusion measured along the various axes.

D 5 F a11 a12 a13

a21 a22 a23

a31 a32 a33

G [1]

In biological systems the rate of diffusion is the same
irectly opposing directions. This results in a symmetric te
ith aij 5 aji . Therefore, there are only six unique element

he diffusion tensor. This paper describes a method for ex
ng useful scalar information from the tensor.

A first step to extracting scalar information from the dif
ion tensor is to dissect it into two parts, each having com
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nto component eigenvaluesand eigenvectors(1, 2).

D 5 @ V1 V2 V3 #F l1 0 0
0 l2 0
0 0 l3

G @ V1 V2 V3 # 21

[2]

The eigenvectors,V1, V2, andV3, are column vectors whic
escribe the orientation of the primary diffusivity in sp
elative to an external frame of reference. These unitless
ors define an orthonormal basis for a preferred coord
ystem for the diffusion tensor. The eigenvalues of a diag
zed tensor are the three elements along the principal dia
f the tensor,l1, l2, and l3. The eigenvalues each have
nits of diffusivity, usually mm2/s. Each eigenvalue corr
ponds to an eigenvector and together they specify the m
ude of diffusivity in each of three orthogonal directions
pace relative to an external frame of reference. Howeve
ositions in which the eigenvalues appear along the prin
iagonal of the tensor depend on the original frame of re
nce. The positions do not correspond to the relative m

udes of the eigenvalues. Thus the process of mathem
iagonalization separates the diffusion tensor into two com
ent parts: The eigenvectors are unitless and contain all o

nformation about the spatial orientation of the diffusion r
ive to an external frame of reference. The eigenvalues hav
nits of diffusivity and carry all of the information about t
agnitude of diffusion, with no information about direct

other than the fact that the three eigenvalues describe diff
n orthogonal directions). The eigenvectors will not be con
red further in this paper.
A diffusion tensor describing a biological system has th

eal positive eigenvalues. This set of three eigenvalues c
onsidered to be coordinates of a point in three-dimens
uclidean space. Because the eigenvalues are all positiv
llowed position of the point they describe in space is restr

o one-eighth of three-dimensional space. This allowable
et of three dimensional space will be referred to aseigenvalue
pace.A coordinate system other than the rectangular C
ian coordinate system of the original eigenvalues ca
mposed on this eigenvalue space. A desirable requireme
ny new coordinate system, such as a cylindrical or sphe
oordinate system, is that the component basis elemen
rthogonal. This eliminates colinearity among the coordin
o that each coordinate supplies unique, complementary
ndependent information about each point in space. A poi
igenvalue space, which is a subset of three-dimensional s
equires exactly three coordinates in an orthogonal syste
ts unique specification.

None of the information which can be conveyed by
riginal three eigenvalues is altered by adopting a new c
inate system for eigenvalues space. Any parameter or
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igenvalues can also be expressed as a function of the c
ates in any new coordinate system.
There are six possible permutations of the order of the e

alues. Each permutation defines a point in eigenvalue s
hus eigenvalue space can be divided into six regions,
orresponding to a permutation of the order of the eigenva
ets of eigenvalues in which two or three are identical lie a
oundaries between these regions. The region correspond

he ordering (lmax, lint, lmin) will be referred to as ordered eige
alue space wherelmax, lint, andlmin refer to the largest, interm
iate, and smallest eigenvalues, respectively. This definition

o the true values of the eigenvalue; the influence of measure
rror is not a factor in this formulation.

THE COORDINATE SYSTEMS

A scalar measure is a scalar valued function of the ei
alues of the diffusion tensor which conveys information ab
he tensor, such as an anisotropy measure. The value
nvariant measure does not depend on the frame of referen
he measurement (1). An invariant measure is unchanged
ny of the six cyclic permutations of the order of the th
igenvalues. The information about eigenvalue order al
ifferentiation of the six permutations of the eigenvalues.

his information that is lost during a transformation from e
nvalue space to ordered eigenvalues space.
The first coordinate system to be discussed will be

ectangular Cartesian coordinate system. A modification o
ystem will involve ordering the eigenvalues by magnitu
ext the axes of the original Cartesian coordinate system
e rotated to create the rotated Cartesian coordinate sy
he particular axes rotation which is chosen is a key ele

o the subsequent coordinate systems. This orientation o
xes will be maintained and a circular cylindrical coordin
ystem will be imposed. Then, again maintaining the s
rientation of the rotated axes, a spherical coordinate sy
ill be defined. Finally, the measure of the polar angle wil
eparated into a skewness measure and an indicator
pecific permutation of the order of the eigenvalues. The
arameters of the spherical system will be shown to be
articularly useful form: magnitude, anisotropy, and skewn
espectively. It will be shown that the three parameters o
pherical coordinate system which correspond to magni
nisotropy, and skewness have invariant forms so that
alues are independent of the frame of reference. More
hese three measures are mutually orthogonal so that
ontain independent and complementary information abou
igenvalues.

Rectangular Cartesian coordinate system.In this coordi-
ate system, the position of a point,PI c, in eigenvalue space
pecified by the eigenvalues themselves,
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PI c~l1, l2, l3! 5 F l2

l3

G . [3]

he component elements,l1, l2, andl3, of the Cartesian syste
re by definition orthogonal. But, in general, the elements o
artesian coordinate system are not invariant since, in gen

F l1

l2

l3

G Þ F l2

l1

l3

G . [4]

Each element of the vectorPI c has the units of diffusivity.

Cartesian coordinate system with ordered eigenvalues.In
his coordinate system, the position of a point in eigenv
pace is specified by the eigenvalues ordered by magnit

PI ordered~l1, l2, l3! 5 F lmax

l int

lmin

G , [5]

herelmax, l int, andlmin denote the maximum, intermedia
nd minimum values of the eigenvalues.
This is not a true coordinate system, since it maps six p

rom eigenvalue space onto one point in ordered eigenvalue s
he six points which map onto ordered eigenvalue space a
oints defined by the six possible permutations of the eigen
rder. However, thePI ordered transformation is invariant.

Rotated Cartesian coordinate system.The axes of the orig
nal (not ordered) Cartesian coordinate system can be ro
y taking linear combinations of the eigenvalues. The rota
atrix must have orthogonal basis vectors in order for the

oordinate system to have orthogonal axes. If the rota
atrix is orthonormal (the orthogonal basis vectors are of

ength) there is no resultant dilation or contraction of eig
alue space. If an orthonormal transform is used, the resu
easures maintain units of diffusivity.

PI rotated ~l1, l2, l3! 5 F u11 u12 u13

u21 u22 u23

u31 u32 u33

GF l1

l2

l3

G [6]

A particularly useful orthonormal rotation matrix is o
hich places the newz axis along the eigenvalue triple ident

ine, l1 5 l2 5 l3, with the positivez axis in the direction o
he positive eigenvalues. When diffusion is isotropic, the s
n all directions, the diffusion eigenvalues lie along this tr
dentity line.
e
l,
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PI r ~l1, l2, l3! 5 3 Î6 Î6 Î6

0
21

Î2

1

Î2
1

Î3

1

Î3

1

Î3

4Fl1

l2

l3

G 5 Fx
y
z
G , [7]

herex, y, z . 0.
The eigenvalue triple identity line is an obvious line

ymmetry in eigenvalue space since any measure appl
ny point along the line of triple identity will automatically

nvariant.
The coordinatesx, y, andz all have units of diffusivity. The

ubscript r inPI r denotes the particular rotation of the a
here thez axis is along the triple identity line. In this syste

hex axis is arbitrarily chosen to be in thel2 5 l3 plane with
he positivex axis in the direction wherel1 , l2. The positive

axis is in the planel1 5 (l2 1 l3)/2 with the positivey
irection wherel2 , l3. As shown in Eqs. [7] and [8],z is

nvariant, whereasx and y are not invariant measures. T
arameterz is closely related to the well-known measuresD bar

3) and trace (1, 2, 4).

z 5
~l1 1 l2 1 l3!

Î3
5 lbar Î3 5 Dbar Î3 5

trace~D!

Î3
, [8]

hereD is the diffusion tensor andlbar is the mean of the thre
igenvalues.D bar and trace are defined as in Refs. (1–4).
The six points in eigenvalue space corresponding to th

ermutations of the order of the eigenvalues, when defin
erms of rotated Cartesian coordinate system, all have the

value. The points defined by the six permutations of
igenvalues display an interesting symmetry in thex–y plane
orthogonal to thez axis). These six points all lie the sam
istance from the origin in thex–y plane. This radial symmet
f the eigenvalue permutations is utilized in the circular cy
rical coordinate system described below. The six points
ned by the six permutations of the eigenvalues can be
idered to be three sets of two points; each set is symmetr
laced about one of the three lines defined by the interse
f the x, y plane and the planes:l1 5 l2, l2 5 l3, andl3 5

1; see Fig. 1.
The PI r system is similar to a set of measures propose
onturoet al. (3). Conturoet al. applied their transformatio
nly to ordered eigenvalues. Their axes of the major and m
lements of anisotropy,h and«, are colinear with thex andy
xes, respectively. However, transformation from the Carte
oordinate system to theh, «, lbar system is not performed wi
n orthonormal matrix so there is a distortion of distance
pace,h 5 2x/=6, « 5 2y/=2, lbar 5 z/=3, whenl1 ,

2 , l3.
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Circular cylindrical coordinate system.This system is
odification of thePI r system, Eq. [7]. Thez axis is the sam
s in thePI r system. The other two coordinates,r andf, of PI cyl

re the coordinatesx andy of PI 4 written in polar coordinat
orm. lbar denotes the mean of the eigenvalues,r $ 0, and 0#

, 2p.

PI cyl ~l1, l2, l3! 5 F r
f
z
G [9]

r ~l1, l2, l3! 5 Îx2 1 y2

5 Î~l1 2 lbar!
2 1 ~l2 2 lbar!

2 1 ~l3 2 lbar!
2 [10]

he value of the polar angle measure,f, must be defined t
ccount for the specific quadrant of thex–y plane where th
igenvalue point lies.
Case I, Quadrant I:x . 0 andy . 0.

f~l1, l2, l3! 5 ArcTanFy

xG 5 ArcTanF Î3 ~l2 2 l3!

2l1 2 l2 2 l3
G

[11]

FIG. 1. Thex–y plane of the rotated Cartesian coordinate system sho
he projection of points defined by the six permutations of the eigenvalue
hese points all lie in at a distancer from the origin.
f~l1, l2, l3! 5 p 1 ArcTanF Î3 ~l2 2 l3!

2l1 2 l2 2 l3
G [12]

Case III, Quadrant IV:x . 0 andy , 0.

f~l1, l2, l3! 5 2p 1 ArcTanF Î3 ~l2 2 l3!

2l1 2 l2 2 l3
G [13]

As in the PI 4 system,z is invariant. Equation [10] demo
trates that the new parameterr is also invariant.r has the sam
nits as the eigenvalues.r is proportional to the standa
eviation of the eigenvalues (2).

sd ~l1, l2, l3!

5
Î~l1 2 lbar!

2 1 ~l2 2 lbar!
2 1 ~l3 2 lbar!

2

Î2

5
r

Î2
, [14]

here sd is the standard deviation of the eigenvalues.
The polar angle measure,f, is unitless but not invariant. Th

ero point off is chosen to be thex axis, wherel2 5 l3, in the
irection thatl1 , l2. f ranges from 0 to 2p.
An invariant measure, which represents the coefficien

ariation of the diffusion eigenvalues (2), is (Appendix A)

cv~l1, l2, l3!

5
Î3

Î2

r

z

5
Î~l1 2 lbar!

2 1 ~l2 2 lbar!
2 1 ~l3 2 lbar!

2

Î2 lbar

. [15]

cv is unitless. It is related to measures commonly use
xpress the degree of eigenvalue anisotropy (see Append
s (3), RA (relative anisotropy) (2, 4), and FA (fractiona
nisotropy) (2, 4). However,cv is not orthogonal toz (or D bar

r trace). Thus, the values ofcv andz are neither independe
or complementary (see Discussion).

Spherical coordinate system.This coordinate system
omposed of one radial measure,r, and two unitless ang
easures,u andf. The polar angle measuref is identical to

g
er.
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72 MARK M. BAHN
he polar angle measuref in the circular cylindrical coordina
ystem:

PI s ~l1, l2, l3! 5 F u
f
r
G [16]

r~l1, l2, l3! 5 Îl 1
2 1 l 2

2 1 l 3
2 [17]

u ~l1, l2, l3! 5 ArcCosF ~l1 1 l2 1 l3!

Î3 Îl 1
2 1 l 2

2 1 l 3
2G

5 ArcCosF z

rG
5 ArcTanF r

zG [18]

see Fig. 2).

f~l1, l2, l3!

5 quadrant modification1 ArcTanF Î3 ~l2 2 l3!

2l1 2 l2 2 l3
G ,

[19]

herer . 0, 0 # u , ArcCos(=3/3) 5 0.96 Rad5 54.74°,
nd 0# f , 2p. The quadrant modification forf was detailed

n Eqs. [11–13].
r is invariant and has the units of diffusivity. It is a measur

he total magnitude of diffusion (4). u is invariant and unitless.
s related to the coefficient of variation of the eigenvalues
endix A) and is thus a measure of their relative dispersion.f is
nitless but not invariant. It is a mixed measure of the skew
f the diffusion eigenvalues and an indicator of the permutatio

he order of the eigenvalues (discussed below). The zero po

FIG. 2. A point in thex–z plane. Tanu 5 r /z and cosu 5 z/r.
f

-

ss
of
of

ero point off is again chosen to coincide with the planel2 5 l3

n the direction thatl1 , l2.

The skewness measure, s, and permutation indicato
he measure of the polar angle,f, can be divided into tw
omponents. The first component iss, a skewness measu
he second component isp, an indicator of the order of th
igenvalues.
The indicator measure,p, can be defined as (Fig. 3)

p 5 1 for 0 # f , p/3

p 5 2 for p/3 # f , 2p/3

p 5 3 for 2p/3 # f , p

p 5 4 for p # f , 4p/3

p 5 5 for 4p/3 # f , 5p/3

p 5 6 for 5p/3 # f , 2p. [20]

is an indicator of the permutation of the eigenvalue order
quivalent definition ofp is

FIG. 3. Thex–y plane. The lines indicate the intersection of thex–y plane
with the l1 5 l2, l2 5 l3, and l3 5 l1 planes, respectively. The regio
corresponding to different permutations of the eigenvalue order are indi
The region wherep 5 1 corresponds to the projection of ordered eigenv
space onto thex–y plane.
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p 5 2 for l2 # l1 , l3

p 5 3 for l2 , l3 # l1

p 5 4 for l3 # l2 , l1

p 5 5 for l3 , l1 # l2

p 5 6 for l1 # l3 , l2. [21]

The skewness measure,s, can be defined as

whenp 5 1 s 5 f

whenp 5 2 s 5 ~2p/3! 2 f

whenp 5 3 s 5 f 2 ~2p/3!

whenp 5 4 s 5 ~4p/3! 2 f

whenp 5 5 s 5 f 2 ~4p/3!

whenp 5 6 s 5 2p 2 f. [22]

The skewness parameter,s, can equivalently be defined
sing ordered eigenvalues,

s~l1, l2, l3! 5 ArcTanF Î3 ~l int 2 lmax!

2lmin 2 l int 2 lmax
G . [23]

In other words,s equalsf when the eigenvalues lie
rdered eigenvalue space,p 5 1. s is a mapping off onto a
estricted range [0,p/3]. As with ordering the eigenvalu
ccording to their magnitudes,s is invariant. A third method o
alculatings without the use of logical operators or the nee
rder the eigenvalues is given in Appendix C; see Eq. [C
Many other skewness measures are possible. The nec

nd sufficient requirements for a skewness measure are
rst, it is a function off only (not r or u), second, it is
eriodic function off with period 2p/3, third, it is monotonic
ver each half of its period and, fourth, it is symmetric ab

he midpoint of its period (see Fig. 4).

SUMMARY OF THE TRANSFORMATIONS

The three eigenvalues of the diffusion tensor define a p
n a Cartesian coordinate system. This point can be uniq
xpressed in other coordinate systems. The spherical co
ate system is particularly useful since its orthogonal co
ates,r, u, and f, separate the information about diffus
agnitude, relative eigenvalue dispersion, and skewnes

pectively. The parameterf also contains information abo
he ordering of the eigenvalues. These two componentsf
ary
at,

t

nt
ly
di-
i-

re-

an be separated as the measuresp ands. The three measur
, u, ands are invariant, independent, and mutually orthogo

OTHER VARIATIONS

It is not necessary to use the eigenvalues as the fundam
nit for the Cartesian coordinate system. One alternative w
e to use the square root of the eigenvalues. This cho
otivated by the Einstein equation which relates the root m

quare diffusion distance to the square root of the diffu
oefficient (2, 5),

K 5 F k1

k2

k3

G 5 ÎL 5 F Îl1

Îl2

Îl3

G . [24]

To the degree that the Einstein equation holds true
iffusion in the complex tissue environment, the elementsK
re related to the average distance traveled by the molecu

he different directions. A diffusion ellipsoid has been use
haracterize the diffusion tensor (2). The elements ofK are the
engths of the principal axes of the diffusion ellipsoid.

Using the spherical coordinate system, theK values becom

r~k1, k2, k3! 5 Îk 1
2 1 k 2

2 1 k 3
2 5 Îl1 1 l2 1 l3 [25]

r~k1, k2, k3! 5 Î3Dbar 5 Îtrace~D! [26]

u ~k1, k2, k3! 5 ArcCosF ~k1 1 k2 1 k3!

Î3 Îk 1
2 1 k 2

2 1 k 3
2G

5 ArcCosF ~k1 1 k2 1 k3!

Î3 Îl1 1 l2 1 l3
G . [27]

A constant value ofr(k1, k2, k3) for a volume of brain

FIG. 4. Graphs of skewness measuress (sawtooth function) anda3

smooth function, see Appendix 3). Both satisfy the criteria for skew
easures as defined in the text.
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ength of diffusion, with pathlength in the root mean squ
ense.

DISCUSSION

In the present derivation, the orthogonal coordinates o
pherical system are shown to be particularly useful s
easures of the diffusion tensor: One coordinate contain

he information about the overall magnitude of diffusion. A
ther contains all of the information about relative eigenv
ispersion. The third coordinate contains all of the informa
bout skewness. Because these coordinates are orthogon
epresent independent and distinct attributes of the diffu
ensor. Moreover, no information is lost when transform
rom the original three eigenvalues to the coordinates o
pherical system. The measures of diffusion magnitude,
ive dispersion, and skewness are all invariant to the fram
eference in which measurement of the diffusion tenso
erformed.
The parameterr represents the total magnitude of diffusi

t is the distance in eigenvalue space from the origin to
oint defined by the eigenvalues. It is the only parameter i
pherical system with units of diffusivity.r is an extension o
he apparent diffusion coefficient (1) applied to isotropic dif
usion; in the isotropic diffusion caser equals the appare
iffusion coefficient.
z or a function ofz is a measure of the magnitude of

sotropic part of total diffusion (4). z does not contain all of th
nformation about total diffusion magnitude.r has units o
iffusivity and contains the information about the abso
ispersion of the eigenvalues. Sincez depends on bothr andu,
(and thus any function ofz) can also be thought of as a mix
easure containing both magnitude and relative eigen
ispersion information. This can be seen by the relations

z 5 r cos~u !. [28]

n the case of isotropic diffusionz 5 r (sinceu 5 0).
Heretofore the term “anisotropy” has not been strictly

bsolutely defined other than in the sense that it literally m
not isotropic.” The parametersz, r , and f (or s) of the
ircular cylindrical coordinate system demonstrate that
arameters are necessary to describe the eigenvalue inf

ion which is not isotropic (not contained inz), in this caser
ndf. No single scalar parameter can be constructed w
eflects all of the information about anisotropy which is c
ained in the eigenvalues.The parameterr is the distance i
igenvalue space from the eigenvalue point to the lin

sotropic diffusion. Sincer is related to the standard deviat
f the eigenvalue, it measures the dispersion of the eige
es. Taken literally, the term anisotropy encompasses
ttributes of the eigenvalues: eigenvalue dispersion and e
e

e
ar
all
-
e
n
they
n

e
la-
of
is

.
e
e

e

ue

r
ns

o
a-

h
-

f

al-
o
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anisotropy” measures proposed in the literature (2, 3). How-
ver, it has the units of diffusivity and thus is not invarian
cale.
In the spherical coordinate system there is no param
hich describes isotropic diffusion. However,r describes th
agnitude of total diffusion. The other two parameters,u and
(or s), reflect the eigenvalue information which is “not to

iffusion.” u is scale invariant and closely related to the c
cient of variation of the eigenvalues. It is more correct to r
o u as a measure ofrelativeeigenvalue dispersion rather th
nisotropy. Allowing for this slight discrepancy in termin
gy, u will herein be referred to as a measure of anisotr
ecause it is closely related to previously described “an
opy” measures (2, 3) and it contains the information from t
igenvalues which is currently referred to as “anisotro

nstead of relative eigenvalue dispersion (RED). This usag
he term anisotropy separates skewness from aniso
RED).

Other “anisotropy” measures have been proposed in
iterature, in particular, RA, FA,As, and the volume ratio (VR
2, 3). Appendices A and B derive mathematical express
elating these measures to the parameters of the present
cal coordinate system. It is shown in Appendix A that RA, F
nd As are functions ofu only and thus are pure anisotro
RED) measures. They all contain identical information ab
he eigenvalues.

The volume ratio, VR, however, is shown in Appendix B
e a function of bothu and f. In particular the form of th
elationship of VR tof is that of a skewness measure. The
ore, VR is a mixed measure containing contributions f
oth skewness and anisotropy (RED).
An advantage ofu over the other anisotropy (RED) me

ures is that differences inu have a ready interpretation. A s
f eigenvalues with an anisotropy of 2u is twice as anisotrop
s one with a measure ofu. This is because the rate of chan
f u is uniform throughout its range. This sort of relations
oes not hold for RA, FA, orAs. All three coordinatesr, u, and
(or s) have this property of being uniform metrics over th

ange.
u is orthogonal tor. It is not orthogonal toz (or trace o

bar). Therefore, there is a degree of colinearity betweenz and
, i.e., these measures do not give complementary informa
is orthogonal toz but r would not be a preferred choice f
second measure to complementz since it’s value is depende
n scale, i.e., sets of eigenvalues which differ only by a s

actor would have different values ofr . Normalizing r to
liminate the scale factor, (i.e.,r /z) yields a measure propo

ional to the coefficient of variation of the eigenvalues whic
function ofu (Appendix A).
The measure of polar angle,f, contains information abo

oth the order of the eigenvalues and the skewness of the
igenvalues. In Appendix C it is shown that a previou
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f f. The skewness measure,s, is invariant. It is orthogonal t
andu. It is also orthogonal toz andr . s also has the proper
f being a uniform metric, i.e., a set of eigenvalues wit
kewness value of 2s has twice the skew as one with a value
. Like z, r , r, u, and f, the skewness measure,s, can be
alculated without ordering the eigenvalues according to
agnitude; see Eq. [C7]. This avoids bias that might be in
uced as a result of ordering the eigenvalues (6). However, the
ffect of measurement error on the values of all of the mea
iscussed in this paper must be assessed.

CONCLUSIONS

Using a spherical coordinate system approach, new
ariant scalar measures for attributes of the diffusion te
igenvalues have been derived. These measures ha
nique property of being mutually orthogonal. Therefo
nlike other measures, the information contained in th
easures is totally independent and complementary, th
o colinearity between measures. Also, use of the co
ates of the spherical coordinate system as scalar mea
tilizes all of the information from the original eigenvalu
ny other measure which can be derived from the orig
igenvalues can also be derived from the measures o
pherical coordinate system.

APPENDIX A

Theorem. The relationship between the two measureu
ndcv is

cv 5
Î3

Î2
tan u. [A1]

Proof. By definition, the coefficient of variation,cv,
quals

cv~l1, l2, l3!

5
standard deviation

mean

5
Î~l1 2 lbar!

2 1 ~l2 2 lbar!
2 1 ~l3 2 lbar!

2

Î2 lbar

. [A2]

The standard deviation was defined in Eq. [14] and the m
as defined in Eq. [8].z andr are defined in Eqs. [8] and [10
ubstituting these expressions into Eq. [A2] and simplify
ields
a
f

ir
-

es

n-
or
the
,
e
is
i-
res

.
l
he

an

g

cv 5 Î2 z
5 Î2

tan u. [A3]

, z, and r form two sides and the hypotenuse of a ri
riangle, respectively; see Fig. 2.

Corollaries.

~1! RA 5 tan u [A4]

~2! FA 5 sin u [A5]

~3! As 5
tan u

Î2
. [A6]

Proof of Corollary (1). The relative anisotropy (2, 4) is a
unction of u,

RA~l1, l2, l3!

5
1

Î3

Î~l1 2 lbar!
2 1 ~l2 2 lbar!

2 1 ~l3 2 lbar!
2

lbar
. @A7#

t is immediately evident from Eqs. [A2] and [A1] that

RA 5
Î2

Î3
cv 5 tan~u !. [A8]

Proof of Corollary (2). The fractional anisotropy (2, 4) is
lso a function ofu,

FA~l1, l2, l3!

5
Î3

Î2

Î~l1 2 lbar!
2 1 ~l2 2 lbar!

2 1 ~l3 2 lbar!
2

Îl 1
2 1 l 2

2 1 l 3
2 . @A9#

ubstituting Eqs. [A7], [10], and [17] and then substituting
A9] (noting thatz/r 5 cosu),

FA 5
Î3

Î2

z

r
RA 5

Î3

Î2
cosu tanu 5

Î3

Î2
sin u. [A10]

Proof of Corollary (3). As is a function ofu. It is defined
s (3)

As~l1, l2, l3!

5
1

Î6

Î~l1 2 lbar!
2 1 ~l2 2 lbar!

2 1 ~l3 2 lbar!
2

lbar
. [A11]

sing Corollary (1), Eq. [A6],

As 5
tan u

Î2
. [A12]
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Theorem. The volume ratio is a mixed measure contain
ontributions from both anisotropy (RED) and skewness.

Proof. The volume ratio is defined as (2, 6)

VR~l1, l2, l3! 5
l1 l2 l3

Fl1 1 l2 1 l3

3 G 3 . [B1]

sing Eq. [7] and the fact that the inverse of the rotation m
s equal to its transpose,

Fl1

l2

l3

G 5 3
22

Î6
0

1

Î3
1

Î6

21

Î2

1

Î3
1

Î6

1

Î2

1

Î3

4Fx
y
z
G . [B2]

In the cylindrical coordinate system,

x 5 r cosf [B3]

y 5 r sin f. [B4]

ubstituting Eqs. [B2], [B3], and [B4] into Eq. [B1] yields

VR~r , f, z! 5 1 2
3 r 2

2 z2 2
r 3 cos~3f!

z3Î2
. [B5]

This derivation demonstrates that in the cylindrical coo
ate system, the volume ratio depends on all three param
, f, and z. The f dependence satisfies the criteria fo
kewness measure defined in the text.
In the spherical coordinate system,

tan u 5
r

z
. [B6]

ubstituting this into Eq. [B5] yields

VR~r, f, u ! 5 1 2
3

2
tan2 u 2

cos~3f!

Î2
tan3 u. [B7]

This derivation demonstrates that in the spherical coord
ystem, the volume ratio is independent of the diffusion m
itude measure,r. However, it is a mixed measure contain

nformation about anisotropy (RED) and skewness as sh
y its dependence onu andf, respectively.
x

-
rs,

te
-

n

VR~r, f, cv! 5 1 2 ~cv! 2 2
2

3Î3
cos~3f!~cv! 3. [B8]

his expression relates the volume ratio to the coefficien
ariation. The dependence of VR onf remains because it is
ixed measure of anisotropy (RED) and skewness.

APPENDIX C

Theorem. The relationship between the two measurea3

7) andf is

a3 5 2
cos@3f#

Î2
. [C1]

Proof. The moment index of skewness,a3, is defined a
7)

a3 5
m3

d3 . [C2]

he third moment of the distribution,m3, is (3)

m3~l1, l2, l3!

5
~l1 2 lbar!

3 1 ~l2 2 lbar!
3 1 ~l3 2 lbar!

3

3
[C3]

nd

d~l1, l2, l3!

5 Îm2

5 Î~l1 2 lbar!
2 1 ~l2 2 lbar!

2 1 ~l3 2 lbar!
2

3
. [C4]

bar is the mean of the three eigenvalues as defined as in E
3 is an invariant measure of skewness.
f is the mixed skewness measure and indicator of e

alue order in both the cylindrical and the spherical coordi
ystems. Consider the three eigenvalues in the cylind
oordinate system. Using the results of De Moivre’s theo
rom complex analysis along with Eq. [10] yields

m3~r , f, z! 5 2
r 3 cos@3f#

3Î6
[C5]
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d~r , f, z! 5
r

Î3
. [C6]

Equations [C5] and [C6] lead directly to Eq. [C1], t
esired result. The relationship satisfies the criteria for a s
ess measure as defined in the text. Figure 4 compare
alues of the skewness measuresa3(f) ands(f).
These results yield a method of calculatings without the use

f logical operations or the need to explicitly order the eig
alues:

s 5
ArcCos@2a3 Î2#

3
. [C7]
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